
Project Proposal

Model Proposal for Life from Scratch

Bhaskar Kumawat

• Course ID: CMPLXSYS 530
• Course Title: Computer Modeling of Complex systems
• Term: Winter, 2025

An online version of this proposal can be found here.

Overview

Goal

I wish to model the origin of self-replication in a 2D world consisting of atoms that move
and bond with each other based on some physical and chemical rules. My goal for this class
project would be to get any sort of self-replication in this system after millions of time-steps,
but I wish to extend it to get Replication Involving Replicable Imperfections (RIRI). RIRI
is characterised by molecules (i.e. groups of bonded atoms) creating robust copies while also
copying any errors that may have appeared previously in the process (Benner 2014).

Rationale

Out of all possible chemistries (set of bonding rules between species of atoms) that can exist,
only some are likely to give rise to self-replicating molecules. Further, the environmental
conditions (other atoms in the surroundings, temperature etc.) can vitally affect whether a
chemistry is able to sustain self-replication. This project aims to explore the conditions that
are required for self-replication to arise in a simple physical system, given arbitrary interaction
rules and environments. I believe that a 2D world consisting of atoms that follow some physics-
y rules (eg. diffusion and collisions) should be sufficient to observe these phenomena. Indeed,
simpler, yet similar grid-based simulations have shown this “origin of self-replication” for one
particular set of rules (Hutton 2002). However, I wish to test this for a large number of
randomly generated chemistries to test some general hypothesis about origin of life.

1

https://kumawatb.github.io/lifefromscratch/proposal.html


Main Micro-level Processes and Macro-level Dynamics of Interest

The simulation world that I’m building consists of a 2D plane over which a large number of
circular “atom” agents reside. Each atom has a species and a state (both being integer
values between 0 and 255). The main processes that these atoms undergo and the expected
emergent dynamics are as follows:

Micro-level processes

• Atomic Diffusion: Each atom performs a random 2D motion similar to a Brownian
particle in a viscous fluid.

• Atomic Collisions: Atoms are solid bodies and collide with each other when they come
in contact.

• Bonding & bond-breaking: The program allows the user to specify any chemistry in
terms of creation and decomposition of bonds between atoms. Bonds are created and
broken probabilistically based on collisions. If two atoms of given species and state (as
specified by the chemistry) collide, they can form a bond with some probability. On the
other hand, if two atoms of given species and state (also specified in the chemistry) are
already bonded, they may break with some probability.

Macro-level/emergent dynamics

• Self-replication: Self-replication is described as a process where groups of atoms (or
molecules) are able to sustain continual creation of self-similar copies in the simulation
world. Previous work has shown this is indeed possible in a similar system, but only for
a very specific set of bonding rules (Hutton 2002).

• Evolution: Evolution is the process by which these molecules change as they self-replicate,
but in a way that these errors are retained in future replications. Thus, RIRI (Repli-
cation involving replicable imperfections) is an important requirement for us to observe
evolution in this system (Benner 2014; Fontana and Schuster 1998).

Model

The model consists of a 2D plane with circular atoms that move around and collide with each
other. Collisions can lead to “reactions” where two atoms (assuming they are compatible) can
bond with each other to form a molecule. Molecules can also decompose into atoms based
on the reactions that are allowed. The set of reactions being used for a given simulation is
called a “chemistry”. The following diagram shows an example chemistry and the resulting
simulation world at a particular time.

2



Figure 1: Schematic of the simulation world and the flow of the model. Colors of the atoms
denote their species and the integer label denotes their state. States can change
during reactions but the species is invariant.

3



1) Environment

The will have a finite, continuous 2D space with reflecting boundaries (i.e. walls). For now,
I’m keeping the temperature constant across the world, but I envision having the temperature
as a continuous function over the simulation environment. I also plan to add some sources
and sinks in the world for atoms to enter and leave the system, thus allowing some sort of
“selection” to emerge naturally.

2) Agents

The agents are circular “atoms” in a 2D world. All agents are the same size and have both
a position in the world and a velocity (both of which are 2-dimensional float vectors). Each
atom also has a “species” and a “state” property, both of which are integral values between
0 and 255. The species of an atom remains constant throughout the simulation but the state
can change during reactions. Atoms diffuse through the world performing a random walk
and can react with other atoms when they collide. These reactions can either form a “bond”
between atoms, joining them together as they move around the world, or simply change their
state without bonding. Bonded atoms (a molecule) can also decompose into their constituents.
Interactions are entirely dependent on collisions and thus on spatial proximity between the
atoms.

3) Model Scheduling

A schematic of the model schedule is shown in figure Figure 1. The entire setup can be
essentially divided into four parts.

• Initialization: Here, the program initializes the parameters and chemistries required
for the simulation. It also generates a random initial state for the system based on a
random number seed and the initial number of atoms (provided as parameters).

The following steps are repeated until the user ends the simulation:

• Diffusion: Here, each atom is assigned a random velocity in any direction (with magni-
tude proportional the the temperature parameter). Then, the simulation is progressed
by a single time-step (of length 𝑑𝑡) so the velocity change appears as a displacement of
the atoms.

• Resolve collisions/bonds: In this step, the simulation takes note of all collisions
(overlapping atoms) and bond extensions and tries to resolve them by moving the atoms
by some computed distance. This step is performed 8x times because sometimes resolving
collision between two atoms may create other collisions in the world.

4



• Reaction: Here, all atom pairs that collided with each other are checked for a “reaction”
by looking their species/states up in the user specified chemistry. If two atoms can react,
they are either bonded or their state is changed probabilistically based on the reaction
probability (also specified by the user). Bonded atoms are also checked for decomposition.

4) Model Parameters and Initialization

The main user defined parameters (apart from the chemistry) are as follows:

• size_x, size_y: Size of the simulation world in arbitrary units.
• diameter: Diameter of an atom
• temperature: Temperature of the world, determines how random an atoms’ movement

is.
• init_atoms: Initial number of atoms in the world.

The model is initialized by first obtaining these parameters from the user through the command
line. Then, the program randomly samples init_atoms number of locations in the simulation
world to create the initial world state.

5) Assessment and Outcome Measures

For the purpose of quantifying self-replication, I will output all molecules and their numbers
that are present in the system every few time-steps. These numbers can be simply plotted over
time to check if there is a sudden explosive increase in the population of a particular molecule,
indicating self-replication.

I will perform a similar analysis with a lot of randomly generated chemistries to find chemistries
that allow self-replication. Then, I will narrow down on chemistries where the succesion
between replicating molecules is such that it qualifies for the definition of replication with
replicable imperfections: i.e., new self-replicators are similar to old self-replicators but are also
stable and do not revert to an earlier state.

6) Parameter Exploration

The most interesting parameter to vary here would be temperature, as it allows an increase in
the possiblity of chance encounters between far apart molecules and atoms. However, instead of
varying the parameter between simulations, I might opt for a larger world with heterogeneous
temperature at different points in the world. I hypothesis that a more “hetergeneous” world
such as this would lead to self-replication faster than a homogeneous temperature simulation.

5



Questions and challenges

Question

1. Rigid vs flexible bonds: There are essentially two ways to create a bond between atoms.
In the first case, the atoms are allowed to rotate around the bond and a large molecule
can essentially flop around in the world and does not have a rigid 2D structure. On the
other hand, a rigid bond restricts the rotation of the atoms and fixes the structure of the
molecule to what it was when the bond was formed. I feel like the flexible case would
be more interesting (both visually and in terms of allowing self-replication) but I’m not
sure if that’s realistic (because real molecules are actually somewhat rigidly bonded to
each other).

Challenge

1. Moving to a larger simulation: According to my tests, the simulation can support around
100,000 atoms at decent speed on a somewhat powerful personal computer. I would like
to scale this further and go upto maybe 1-10 million particles. I’m not sure about the
techniques I could use for this, maybe performing the simulation on a GPU?

Code

The code is available in the github repository here (branch bevylife). The code is written in
Rust and uses the Bevy game engine and the Rapier physics library for improved performance
(I tried writing these from scratch first but it’s both time consuming and not as performative
as using a pre-built engine). I have implemented atomic diffusion and collisions as of now.
The collisions are also reported as events that I can use to make bonds. Rigid bonding (where
the bonds are NOT “floppy”) was easy to implement but is not as interesting. I’m currently
trying to implement “floppy” bonds (a revolute joint). Pre-built binaries to run the current
simulation on different platforms are available here:

• Linux: 64-bit
• Windows: 64-bit
• MacOS: M-series Processors (eg. M1-M4), Intel

If you’re not sure which one to get, just choose the first link for your operating system. If
that doesn’t work, you can try the next one. Please have a look at the release page here for
instructions on running the program.

6

https://github.com/kumawatb/lifefromscratch/tree/bevylife
https://bevyengine.org/
https://rapier.rs/
https://github.com/kumawatb/lifefromscratch/releases/download/v0.1.0-beta/lifefromscratch-linux-x86_64
https://github.com/kumawatb/lifefromscratch/releases/download/v0.1.0-beta/lifefromscratch-win-x86_64.exe
https://github.com/kumawatb/lifefromscratch/releases/download/v0.1.0-beta/lifefromscratch-macos-arm
https://github.com/kumawatb/lifefromscratch/releases/download/v0.1.0-beta/lifefromscratch-macos-x86_64
https://github.com/kumawatb/lifefromscratch/releases/tag/v0.1.0-beta


References

Benner, Steven A. 2014. “Paradoxes in the Origin of Life.” Origins of Life and Evolution of
the Biosphere: The Journal of the International Society for the Study of the Origin of Life
44 (December): 339–43.

Fontana, W, and P Schuster. 1998. “Continuity in Evolution: On the Nature of Transitions.”
Science (New York, N.Y.) 280 (May): 1451–55.

Hutton, Tim J. 2002. “Evolvable Self-Replicating Molecules in an Artificial Chemistry.” Arti-
ficial Life 8: 341–56.

7


	Project Proposal
	Model Proposal for Life from Scratch
	Overview
	Goal
	Rationale
	Main Micro-level Processes and Macro-level Dynamics of Interest

	Model
	1) Environment
	2) Agents
	3) Model Scheduling
	4) Model Parameters and Initialization
	5) Assessment and Outcome Measures
	6) Parameter Exploration

	Questions and challenges
	Code
	References


